Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques.

نویسندگان

  • Dong Soo Hwang
  • Hongbo Zeng
  • Admir Masic
  • Matthew J Harrington
  • Jacob N Israelachvili
  • J Herbert Waite
چکیده

The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca(2+) and Fe(3+) induced significant reversible bridging (work of adhesion W(ad) approximately 0.3 mJ/m(2) to 2.2 mJ/m(2)) between two films at 0.35 m salinity. The strongest observed Fe(3+)-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe(3+) and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein

Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we...

متن کامل

Mussel protein adhesion depends on thiol-mediated redox modulation

Mussel adhesion is mediated by foot proteins (mfps) rich in a catecholic amino acid, 3,4-dihydroxyphenylalanine (dopa), capable of forming strong bidentate interactions with a variety of surfaces. A tendency toward facile auto-oxidation, however, often renders dopa unreliable for adhesion. We demonstrate that mussels limit dopa oxidation during adhesive plaque formation by imposing an acidic, r...

متن کامل

Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise t...

متن کامل

The staying power of adhesion-associated antioxidant activity in Mytilus californianus.

The California mussel, Mytilus californianus, adheres in the highly oxidizing intertidal zone with a fibrous holdfast called the byssus using 3, 4-dihydroxyphenyl-l-alanine (DOPA)-containing adhesive proteins. DOPA is susceptible to oxidation in seawater and, upon oxidation, loses adhesion. Successful mussel adhesion thus depends critically on controlling oxidation and reduction. To explore how...

متن کامل

Dynamics of mussel plaque detachment.

Mussels are well known for their ability to generate and maintain strong, long-lasting adhesive bonds under hostile conditions. Many prior studies attribute their adhesive strength to the strong chemical interactions between the holdfast and substrate. While chemical interactions are certainly important, adhesive performance is also determined by contact geometry, and understanding the coupling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 33  شماره 

صفحات  -

تاریخ انتشار 2010